Keras Intro : 基本模型保存

Sequential-Module模型

常用层

Dense全连接

1
2
3
4
5
6
7
8
9
10
keras.layers.core.Dense(units,
activation = None,
use_bias = True,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = None,
bias_regularizer = None,
activity_regularizer = None,
kernel_constraint = None,
bias_constraint = None)

Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)。其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。
参数说明

  • units:大于0的整数,代表该层的输出维度
  • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
  • use_bias: 布尔值,是否使用偏置项
  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
  • bias_initializer:偏置向量初始化方法,为预定义初始化方法名的字符串,或用于初始化偏置向量的初始化器。参考initializers
  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象
  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
  • activity_regularizer:施加在输出上的正则项,为Regularizer对象
  • kernel_constraints:施加在权重上的约束项,为Constraints对象
  • bias_constraints:施加在偏置上的约束项,为Constraints对象